Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Sc₂MgGa₂ and Y₂MgGa₂

Martin Sahlberg* and Yvonne Andersson

Department of Materials Chemistry, Box 538, SE-751 21 Uppsala, Sweden Correspondence e-mail: martin.sahlberg@mkem.uu.se

Received 16 September 2008 Accepted 7 January 2009 Online 7 February 2009

Scandium magnesium gallide, Sc_2MgGa_2 , and yttrium magnesium gallide, Y_2MgGa_2 , were synthesized from the corresponding elements by heating under an argon atmosphere in an induction furnace. These intermetallic compounds crystallize in the tetragonal Mo₂FeB₂-type structure. All three crystallographically unique atoms occupy special positions and the site symmetries of (Sc/Y, Ga) and Mg are *m*2*m* and 4/*m*, respectively. The coordinations around Sc/Y, Mg and Ga are pentagonal (Sc/Y), tetragonal (Mg) and triangular (Ga) prisms, with four (Mg) or three (Ga) additional capping atoms leading to the coordination numbers [10], [8+4] and [6+3], respectively. The crystal structure of Sc₂MgGa₂ was determined from single-crystal diffraction intensities and the isostructural Y_2MgGa_2 was identified from powder diffraction data.

Comment

The potential use of magnesium alloys as storage materials for hydrogen has led to a large number of investigations on different magnesium alloys (Selvam et al., 1986; Sahlberg & Andersson, 2007; Sahlberg et al., 2007; Zlotea et al., 2008). Different compositions in the ternary Sc-Mg-Ga and Y-Mg-Ga systems have been synthesized in order to investigate the hydrogen absorption properties of these compounds, and several intermediate phases have been found. There are numerous RE_2T_2X compounds (where RE is a rare earth metal, T is a transition metal and X is a p-block metal) which often crystallize in the W₂CoB₂-type (Rieger et al., 1966) or Mo₂FeB₂-type structures (Rieger et al., 1964). These types of compounds were reviewed by Lukachuk & Pöttgen (2003). The Mo₂FeB₂-type structure is a ternary ordered version of the U₃Si₂-type structure (Zachariasen, 1949), where the two uranium sites are occupied by different atoms.

We have synthesized single crystals of Sc_2MgGa_2 , determined the crystal structure and found it to have the Mo_2FeB_2 type structure. Prior to this investigation, there were no ternary gallide phases reported with the Mo_2FeB_2 -type structure, only for the binary Ce_3Ga_2 and Gd_3Ga_2 structures. It should also be noted that in the Sc-Mg-Ga ternary system this is, to our knowledge, the first reported ternary phase. The Mo₂FeB₂-type structure, space group P4/mbm, can be described as two intergrown slabs of CsCl and AlB₂ types, as shown in Fig. 1. The compositions in the CsCl and AlB₂ slabs are ScMg and ScGa₂, respectively. The structure is layered in the *z* direction, and in Sc₂MgGa₂ the Mg and Ga atoms form a Ga₂Mg layer at z = 0 and the Sc atoms form a layer at z = 0.5.

The coordination around Mg is approximately a tetragonal prism of eight Sc atoms with four additional Ga atoms capping

Figure 1

The crystal structure of Sc_2MgGa_2 , viewed down the *c* axis, showing the Ga_2Mg and Sc layers. The two slabs of 'CsCl' and 'AlB₂' are emphasized. Key: Mg white, Ga black and Sc light grey (red in the electronic version of the paper). Displacement ellipsoids are drawn at the 95% probability level.

Figure 2

Coordination around (a) the Mg atom, (b) the Ga atom and (c) the Sc atom. Displacement ellipsoids are drawn at the 95% probability level.

inorganic compounds

Figure 3

SEM image of a sample with the overall composition $ScMg_4Ga$. The Sc_2MgGa_2 crystals are shown in the matrix.

the rectangular faces (Fig. 2*a*). Ga is coordinated by nine atoms in a capped triangular prismatic arangement, *viz*. six Sc atoms in the prism plus two Mg and one Ga atom outside the rectangular faces (Fig. 2*b*). Sc is surrounded by two [Ga₃Mg₂] rings, forming a distorted pentagonal prism (Fig. 2*c*).

The interatomic distances are in agreement with the corresponding binary compounds. The shortest interatomic distance is the Ga···Ga distance [2.535 (2) Å], which is slightly longer than the interatomic distance (2.48 Å) in orthorhombic α -Ga. The bonding in the compound is believed to be metallic.

The unit cell for the isostructural Y_2MgGa_2 compound was determined to be a = 7.428 (2) Å and c = 4.2537 (2) Å.

Experimental

Appropriate amounts of the elements (Mg 99.99%, Sc 99.95%, Ga 99%) were melted inside a tantalum tube sealed under an argon atmosphere, using a high-frequency induction furnace. The tubes were heated to \sim 1373 K for 10 min, and then cooled to room temperature. Large single crystals of Sc₂MgGa₂ were obtained on the surface of magnesium-rich samples. The mm-sized single crystals were cut into smaller pieces. The bulk samples were characterized by X-ray powder diffraction. The chemical composition of the single crystals was also analysed with SEM-EDS (scanning electron microscopy-energy-dispersive X-ray spectroscopy). The image in Fig. 3 is taken from a sample with the nominal composition ScMgGa. The composition from EDS was found to be Sc_{0.37}Mg_{0.20}Ga_{0.43} after correction by the ZAF method, which corrects for atomic number (Z), absorption (A) and fluorescence (F). Y₂MgGa₂ was synthesized using the same method as for Sc₂MgGa₂. The phase was found in a multiphase sample with the overall composition YMgGa. Attempts to synthesize large single crystals were not successful, probably due to the high stability of YMgGa and YGa₂. The crystal structure was indexed from powder X-ray diffraction data. The unit cell was determined using the CHECKCELL program (Laguier & Bochu, 2004).

Table 1

Selected bond lengths (Å).

$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.535 (2) 2.8283 (6)
--	-------------------------

Symmetry codes: (i) x, y, z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 2, -z; (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, -z$.

2538 measured reflections 154 independent reflections

 $R_{\rm int} = 0.069$

135 reflections with $I > 2\sigma(I)$

Crystal data

 Sc₂MgGa₂
 Z = 2

 $M_r = 253.67$ Mo K α radiation

 Tetragonal, P4/mbm
 $\mu = 16.43 \text{ mm}^{-1}$

 a = 7.1577 (10) Å
 T = 293 (2) K

 c = 3.9166 (8) Å
 0.14 × 0.09 × 0.04 mm

 V = 200.66 (6) Å³
 T = 200.66 = 1000 mm

Data collection

Bruker APEX-I diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\rm min} = 0.20, T_{\rm max} = 0.52$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.028 & 11 \text{ parameters} \\ wR(F^2) &= 0.069 & \Delta\rho_{\text{max}} &= 0.84 \text{ e } \text{\AA}^{-3} \\ S &= 1.16 & \Delta\rho_{\text{min}} &= -0.73 \text{ e } \text{\AA}^{-3} \\ 154 \text{ reflections} & \end{split}$$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *publCIF* (Westrip, 2009).

The authors thank the Swedish Research Council and the Royal Swedish Academy of Sciences for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BD3001). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Laguier, J. & Bochu, B. (2004). CHECKCELL. Ecole Nationale Supérieure de Physique de Grenoble (INPG), France.
- Lukachuk, M. & Pöttgen, R. (2003). Z. Kristallogr. 218, 767-787.
- Rieger, W., Nowotny, H. & Bebesovsky, F. (1964). Monatsh. Chem. 95, 1502– 1503.
- Rieger, W., Nowotny, H. & Bebesovsky, F. (1966). Monatsh. Chem. 97, 378-382.
- Sahlberg, M. & Andersson, Y. (2007). J. Alloys Compd, 446-447, 134-137.
- Sahlberg, M., Gustafsson, T. & Andersson, Y. (2007). Acta Cryst. E63, i195.
- Selvam, P., Viswanathan, B., Swamy, C. S. & Srinivasan, V. (1986). Int. J. Hydrogen Energy, 11, 169–192.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2009). publCIF. In preparation.
- Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.
- Zlotea, C., Sahlberg, M., Oezbilen, S., Moretto, P. & Andersson, Y. (2008). *Acta Mater.* **56**, 2421–2428.